Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.067
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 57, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605367

RESUMO

Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome caused by heterozygous germline mutations or deletions in the TP53 tumor suppressor gene. Central nervous system tumors, such as choroid plexus tumors, medulloblastomas, and diffuse gliomas, are frequently found in patients with LFS. Although molecular profiles of diffuse gliomas that develop in pediatric patients with LFS have been elucidated, those in adults are limited. Recently, diffuse gliomas have been divided into pediatric- and adult-type gliomas, based on their distinct molecular profiles. In the present study, we investigated the molecular profiles of high-grade gliomas in three adults with LFS. These tumors revealed characteristic histopathological findings of high-grade glioma or glioblastoma and harbored wild-type IDH1/2 according to whole exome sequencing (WES). However, these tumors did not exhibit the key molecular alterations of glioblastoma, IDH-wildtype such as TERT promoter mutation, EGFR amplification, or chromosome 7 gain and 10 loss. Although WES revealed no other characteristic gene mutations or copy number alterations in high-grade gliomas, such as those in histone H3 genes, PDGFRA amplification was found in all three cases together with uniparental disomy of chromosome 17p, where the TP53 gene is located. DNA methylation analyses revealed that all tumors exhibited DNA methylation profiles similar to those of pediatric-type high-grade glioma H3-wildtype and IDH-wildtype (pHGG H3-/IDH-wt), RTK1 subtype. These data suggest that high-grade gliomas developed in adult patients with LFS may be involved in pHGG H3-/IDH-wt. PDGFRA and homozygous alterations in TP53 may play pivotal roles in the development of this type of glioma in adult patients with LFS.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioblastoma , Glioma , Síndrome de Li-Fraumeni , Adulto , Humanos , Criança , Glioblastoma/genética , Glioblastoma/patologia , Síndrome de Li-Fraumeni/genética , Genes p53 , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Mutação/genética , Neoplasias Cerebelares/genética , Isocitrato Desidrogenase/genética
2.
PLoS One ; 19(4): e0296958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558074

RESUMO

In pre-clinical models of brain gliomas, Relaxation Along a Fictitious Field in second rotating frame (TRAFF2), continues wave T1rho (T1ρcw), adiabatic T1rho (T1ρadiab), and adiabatic T2rho (T2ρadiab) relaxation time mappings have demonstrated potential to non-invasively characterize brain gliomas. Our aim was to evaluate the feasibility and potential of 4 different spin lock methods at 3T to characterize primary brain glioma. 22 patients (26-72 years) with suspected primary glioma. T1ρcw was performed using pulse peak amplitude of 500Hz and pulse train durations of 40 and 80 ms while the corresponding values for T1ρadiab, T2ρadiab, TRAFF2 were 500/500/500Hz and 48 and 96, 64 and 112, 45 and 90 ms, respectively. The parametric maps were calculated using a monoexponential model. Molecular profiles were evaluated from tissue specimens obtained during the resection. The lesion regions-of-interest were segmented from high intensity FLAIR using automatic segmentation with manual refinement. Statistical descriptors from the voxel intensity values inside each lesion and radiomic features (Pyrad MRC package) were calculated. From extracted radiomics, mRMRe R package version 2.1.0 was used to select 3 features in each modality for statistical comparisons. Of the 22 patients, 10 were found to have IDH-mutant gliomas and of those 5 patients had 1p/19q codeletion group comparisons. Following correction for effects of age and gender, at least one statistical descriptor was able to differentiate between IDH and 1p/19q codeletion status for all the parametric maps. In the radiomic analysis, corner-edge detector features with Harris-Stephens filtered signal showed significant group differences in IDH and 1p/19q codeletion groups. Spin lock imaging at 3T of human glioma was feasible and various qualitative parameters derived from the parametric maps were found to have potential to differentiate IDH and 1p19q codeletion status. Future larger prospective clinical trials are warranted to evaluate these methods further.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Estudos de Viabilidade , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Mutação , Glioma/diagnóstico por imagem , Glioma/patologia , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19
3.
NPJ Syst Biol Appl ; 10(1): 38, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594351

RESUMO

Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation of poorly differentiated myeloid cells, with a heterogenous mutational landscape. Mutations in IDH1 and IDH2 are found in 20% of the AML cases. Although much effort has been made to identify genes associated with leukemogenesis, the regulatory mechanism of AML state transition is still not fully understood. To alleviate this issue, here we develop a new computational approach that integrates genomic data from diverse sources, including gene expression and ATAC-seq datasets, curated gene regulatory interaction databases, and mathematical modeling to establish models of context-specific core gene regulatory networks (GRNs) for a mechanistic understanding of tumorigenesis of AML with IDH mutations. The approach adopts a new optimization procedure to identify the top network according to its accuracy in capturing gene expression states and its flexibility to allow sufficient control of state transitions. From GRN modeling, we identify key regulators associated with the function of IDH mutations, such as DNA methyltransferase DNMT1, and network destabilizers, such as E2F1. The constructed core regulatory network and outcomes of in-silico network perturbations are supported by survival data from AML patients. We expect that the combined bioinformatics and systems-biology modeling approach will be generally applicable to elucidate the gene regulation of disease progression.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Redes Reguladoras de Genes/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Carcinogênese
4.
J Neuropathol Exp Neurol ; 83(5): 338-344, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38605523

RESUMO

EGFR amplification in gliomas is commonly defined by an EGFR/CEP7 ratio of ≥2. In testing performed at a major reference laboratory, a small subset of patients had ≥5 copies of both EGFR and CEP7 yet were not amplified by the EGFR/CEP7 ratio and were designated high polysomy cases. To determine whether these tumors are more closely related to traditionally defined EGFR-amplified or nonamplified gliomas, a retrospective search identified 22 out of 1143 (1.9%) gliomas with an average of ≥5 copies/cell of EGFR and CEP7 with an EGFR/CEP7 ratio of <2 displaying high polysomy. Of these cases, 4 had insufficient clinicopathologic data to include in additional analysis, 15 were glioblastomas, 2 were IDH-mutant astrocytomas, and 1 was a high-grade glial neoplasm, NOS. Next-generation sequencing available on 3 cases demonstrated one with a TERT promoter mutation, TP53 mutations in all cases, and no EGFR mutations or amplifications, which most closely matched the nonamplified cases. The median overall survival times were 42.86, 66.07, and 41.14 weeks for amplified, highly polysomic, and nonamplified, respectively, and were not significantly different (p = 0.3410). High chromosome 7 polysomic gliomas are rare but our data suggest that they may be biologically similar to nonamplified gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Estudos Retrospectivos , Neoplasias Encefálicas/patologia , Hibridização in Situ Fluorescente , Receptores ErbB/genética , Glioma/genética , Mutação/genética , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética
5.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642107

RESUMO

Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mutação , Estudos Retrospectivos
6.
J Exp Clin Cancer Res ; 43(1): 98, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561856

RESUMO

BACKGROUND: The complement inhibitor CSMD1 acts as a tumor suppressor in various types of solid cancers. Despite its high level of expression in the brain, its function in gliomas, malignant brain tumors originating from glial cells, has not been investigated. METHODS: Three cohorts of glioma patients comprising 1500 patients were analyzed in our study along with their clinical data. H4, U-118 and U-87 cell lines were used to investigate the tumor suppressor function of CSMD1 in gliomas. PDGFB-induced brain tumor model was utilized for the validation of in vitro data. RESULTS: The downregulation of CSMD1 expression correlated with reduced overall and disease-free survival, elevated tumor grade, wild-type IDH genotype, and intact 1p/19q status. Moreover, enhanced activity was noted in the neuroinflammation pathway. Importantly, ectopic expression of CSMD1 in glioma cell lines led to decreased aggressiveness in vitro. Mechanically, CSMD1 obstructed the TNF-induced NF-kB and STAT3 signaling pathways, effectively suppressing the secretion of IL-6 and IL-8. There was also reduced survival in PDGFB-induced brain tumors in mice when Csmd1 was downregulated. CONCLUSIONS: Our study has identified CSMD1 as a tumor suppressor in gliomas and elucidated its role in TNF-induced neuroinflammation, contributing to a deeper understanding of glioma pathogenesis.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Animais , Camundongos , Doenças Neuroinflamatórias , Proteínas Proto-Oncogênicas c-sis/genética , Glioma/patologia , Neoplasias Encefálicas/patologia , Intervalo Livre de Doença , Isocitrato Desidrogenase/genética , Mutação , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor/genética
7.
Acta Neuropathol ; 147(1): 68, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583102

RESUMO

Mutations in the pivotal metabolic isocitrate dehydrogenase (IDH) enzymes are recognized to drive the molecular footprint of diffuse gliomas, and patients with IDH mutant gliomas have overall favorable outcomes compared to patients with IDH wild-type tumors. However, survival still varies widely among patients with IDH mutated tumors. Here, we aimed to characterize molecular signatures that explain the range of IDH mutant gliomas. By integrating matched epigenome-wide methylome, transcriptome, and global metabolome data in 154 patients with gliomas, we identified a group of IDH mutant gliomas with globally altered metabolism that resembled IDH wild-type tumors. IDH-mutant gliomas with altered metabolism have significantly shorter overall survival from their IDH mutant counterparts that is not fully accounted for by recognized molecular prognostic markers of CDKN2A/B loss and glioma CpG Island Methylator Phenotype (GCIMP) status. IDH-mutant tumors with dysregulated metabolism harbored distinct epigenetic alterations that converged to drive proliferative and stem-like transcriptional profiles, providing a window to target novel dependencies in gliomas.


Assuntos
Glioma , Isocitrato Desidrogenase , Humanos , Isocitrato Desidrogenase/genética , Glioma/genética , Epigenômica , Mutação/genética , Transcriptoma
8.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447055

RESUMO

Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.


Assuntos
Isocitrato Desidrogenase , NAD , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , NADP/metabolismo , NAD/metabolismo , Isoformas de Proteínas
10.
Comput Methods Programs Biomed ; 248: 108116, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518408

RESUMO

BACKGROUND AND OBJECTIVE: Mutations in isocitrate dehydrogenase 1 (IDH1) play a crucial role in the prognosis, diagnosis, and treatment of gliomas. However, current methods for determining its mutation status, such as immunohistochemistry and gene sequencing, are difficult to implement widely in routine clinical diagnosis. Recent studies have shown that using deep learning methods based on pathological images of glioma can predict the mutation status of the IDH1 gene. However, our research focuses on utilizing multi-scale information in pathological images to improve the accuracy of predicting IDH1 gene mutations, thereby providing an accurate and cost-effective prediction method for routine clinical diagnosis. METHODS: In this paper, we propose a multi-scale fusion gene identification network (MultiGeneNet). The network first uses two feature extractors to obtain feature maps at different scale images, and then by employing a bilinear pooling layer based on Hadamard product to realize the fusion of multi-scale features. Through fully exploiting the complementarity among features at different scales, we are able to obtain a more comprehensive and rich representation of multi-scale features. RESULTS: Based on the Hematoxylin and Eosin stained pathological section dataset of 296 patients, our method achieved an accuracy of 83.575 % and an AUC of 0.886, thus significantly outperforming other single-scale methods. CONCLUSIONS: Our method can be deployed in medical aid systems at very low cost, serving as a diagnostic or prognostic tool for glioma patients in medically underserved areas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/genética , Mutação , Prognóstico , Isocitrato Desidrogenase/genética
11.
J Cancer Res Ther ; 20(1): 25-32, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554294

RESUMO

OBJECTIVE: The aim of this study is to present the expressions of Calreticulin (CALR) and Glucagon-like peptide-1 (GLP-1) in high-grade gliomas and to further show the relation between the levels of these molecules and Ki-67 index, presence of Isocitrate dehydrogenase (IDH)-1 mutation, and tumor grade. PATIENTS AND METHODS: A total of 43 patients who underwent surgical resection due to high-grade gliomas (HGG) (grades III and IV) were included. The control group comprised 27 people who showed no gross pathology in the brain during the autopsy procedures. Adequately sized tumor samples were removed from each patient during surgery, and cerebral tissues were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. RESULTS: Patients with high-grade gliomas showed significantly higher levels of CALR and significantly lower levels of GLP-1 when compared to control subjects (P = 0.001). CALR levels were significantly higher, GLP-1 levels were significantly lower in grade IV gliomas than those in grade III gliomas (P = 0.001). Gliomas with negative IDH-1 mutations had significantly higher CALR expressions and gliomas with positive IDH-1 mutations showed significantly higher GLP-1 expressions (P = 0.01). A positive correlation between Ki-67 and CALR and a negative correlation between Ki-67 and GLP-1 expressions were observed in grade IV gliomas (P = 0.001). CONCLUSIONS: Our results showed that higher CALR and lower GLP-1 expressions are found in HGGs compared to normal cerebral tissues.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patologia , Prognóstico , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Glioma/patologia , Peptídeo 1 Semelhante ao Glucagon , Isocitrato Desidrogenase/genética , Mutação , Gradação de Tumores
12.
JCO Precis Oncol ; 8: e2300544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547421

RESUMO

PURPOSE: Isocitrate dehydrogenase (IDH)1/2 genomic alterations (GA) occur in 20% of intrahepatic cholangiocarcinoma (iCCA); however, the immunogenomic landscape of IDH1-/2-mutated iCCA is largely unknown. METHODS: Comprehensive genomic profiling (CGP) was performed on 3,067 cases of advanced iCCA. Tumor mutational burden (TMB), PD-L1 expression (Dako 22C3), microsatellite instability (MSI), and genomic loss of heterozygosity (gLOH) as a surrogate marker for homologous recombination deficiency were examined. RNA sequencing of 73 patient samples was analyzed for differences in stromal/immune cell infiltration, immune marker expression, and T-cell inflammation. Tissue microarray arrays were subjected to multiplex immunohistochemistry and colocalization analysis in 100 surgical samples. Retrospective clinical data were collected for 501 patients with cholangiocarcinoma to examine median overall survival (mOS) in IDH1/2+ versus IDHwt. RESULTS: Of 3,067 iCCA cases subjected to CGP, 426 (14%) were IDH1+ and 125 (4%) were IDH2+. IDH1 GA included R132C (69%) and R132L/G/S/H/F (16%/7%/4%/3%/<1%). IDH2 GA occurred at R172 (94.4%) and R140 (6.6%). No significant difference was seen in median gLOH between IDH1+ versus IDHwt iCCA (P = .37), although patterns of comutations differed. MSI-High (P = .009), TMB ≥10 mut/Mb (P < .0001), and PD-L1 positivity were lower in IDH1/2+ versus IDHwt iCCA. Resting natural killer cell population, CD70, and programmed cell death 1 expression were significantly higher in non-IDH1-mutated cases, whereas V-set domain containing T-cell activation inhibitor 1 (B7-H4) expression was significantly higher in IDH1+. No significant difference in mOS was observed between IDH1/2+ versus IDHwt patients. CONCLUSION: Significant differences in GA and immune biomarkers are noted between IDH1/2+ and IDHwt iCCA. IDH1-/2-mutated tumors appear immunologically cold without gLOH. These immunogenomic data provide insight for precision targeting of iCCA with IDH alterations.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Isocitrato Desidrogenase , Humanos , Antígeno B7-H1/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Isocitrato Desidrogenase/genética , Mutação , Estudos Retrospectivos
13.
EBioMedicine ; 102: 105090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547578

RESUMO

BACKGROUND: Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS: We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS: We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION: Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING: Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).


Assuntos
Aminopiridinas , Neoplasias Ósseas , Condrossarcoma , Sarcoma , Triazinas , Humanos , Animais , Camundongos , Medicina de Precisão , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Isocitrato Desidrogenase/genética , Mutação , Neoplasias Ósseas/genética
14.
Clin Neuropathol ; 43(2): 60-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495012

RESUMO

Adult-type diffuse gliomas are the most prevalent type of malignant adult brain tumors. Intratumoral heterogeneity can hinder accurate diagnosis and subsequent treatment. This case report documents a tumor with intratumoral heterogeneity, both histologically and by methylation analysis, located within the left cerebral hemisphere of a 29-year-old female. She presented after a witnessed generalized tonic clonic seizure at home. Two years prior she had a witnessed seizure; however, no brain imaging was done at the time. Magnetic resonance imaging (MRI), on this admission, showed a mass lesion in the left frontal operculum with poorly identified margins and right-sided midline shift. Sampling from the left temporal lobe showed an IDH-mutant, ATRX-mutant astrocytoma, which appeared grade 4 in the enhancing anterior portion and grade 2 in the left temporal lobe. Methylation analysis confirmed this heterogeneity. In summary, this is an excellent example of tumor heterogeneity both histologically and by molecular analysis. It is probable, given the clinical history of presentation 2 years prior, that this tumor originated as a low-grade glioma and subsequently evolved.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Adulto , Feminino , Humanos , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/patologia , Astrocitoma/patologia , Encéfalo/patologia , Convulsões , Mutação , Isocitrato Desidrogenase/genética
15.
Nat Commun ; 15(1): 2358, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509128

RESUMO

While excessive production of reactive oxygen species (ROS) is a characteristic hallmark of numerous diseases, clinical approaches that ameliorate oxidative stress have been unsuccessful. Here, utilizing multi-omics, we demonstrate that in cardiomyocytes, mitochondrial isocitrate dehydrogenase (IDH2) constitutes a major antioxidative defense mechanism. Paradoxically reduced expression of IDH2 associated with ventricular eccentric hypertrophy is counterbalanced by an increase in the enzyme activity. We unveil redox-dependent sex dimorphism, and extensive mutual regulation of the antioxidative activities of IDH2 and NRF2 by a feedforward network that involves 2-oxoglutarate and L-2-hydroxyglutarate and mediated in part through unconventional hydroxy-methylation of cytosine residues present in introns. Consequently, conditional targeting of ROS in a murine model of heart failure improves cardiac function in sex- and phenotype-dependent manners. Together, these insights may explain why previous attempts to treat heart failure with antioxidants have been unsuccessful and open new approaches to personalizing and, thereby, improving such treatment.


Assuntos
Insuficiência Cardíaca , Estresse Oxidativo , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Oxirredução , Insuficiência Cardíaca/genética , Cardiomegalia , Epigênese Genética , Isocitrato Desidrogenase/genética
16.
Neuroradiology ; 66(4): 521-530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347151

RESUMO

PURPOSE: T2-FLAIR mismatch serves as a highly specific but insensitive marker for IDH-mutant (IDHm) astrocytoma with potential limitations in real-world application. We aimed to assess the utility of a broader definition of T2-FLAIR discordance across a cohort of adult-type diffuse lower-grade gliomas (LrGG) to see if specific patterns emerge and additionally examine factors determining deviation from the classic T2-FLAIR mismatch sign. METHODS: Preoperative MRIs of non-enhancing adult-type diffuse LrGGs were reviewed. Relevant demographic, molecular, and MRI data were compared across tumor subgroups. RESULTS: Eighty cases satisfied the inclusion criteria. Highest discordance prevalence and > 50% T2-FLAIR discordance volume were noted with IDHm astrocytomas (P < 0.001), while < 25% discordance volume was associated with oligodendrogliomas (P = 0.03) and IDH-wildtype (IDHw) LrGG (P = 0.004). "T2-FLAIR matched pattern" was associated with IDHw LrGG (P < 0.001) and small or minimal areas of discordance with oligodendrogliomas (P = 0.03). Sensitivity and specificity of classic mismatch sign for IDHm astrocytoma were 25.7% and 100%, respectively (P = 0.06). Retained ATRX expression and/or non-canonical IDH mutation (n = 10) emerged as a significant factor associated with absence of classic T2-FLAIR mismatch sign in IDHm astrocytomas (100%, P = 0.02) and instead had minimal discordance or matched pattern (40%, P = 0.04). CONCLUSION: T2-FLAIR discordance patterns in adult-type diffuse LrGGs exist on a diverging but distinct spectrum of classic mismatch to T2-FLAIR matched patterns. Specific molecular markers may play a role in deviations from classic mismatch sign.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Adulto , Humanos , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Glioma/patologia , Imageamento por Ressonância Magnética , Astrocitoma/genética , Mutação
17.
J Neurooncol ; 167(1): 133-144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326661

RESUMO

BACKGROUND: Isocitrate dehydrogenase (IDH)1/2 wildtype (wt) astrocytomas formerly classified as WHO grade II or III have significantly shorter PFS and OS than IDH mutated WHO grade 2 and 3 gliomas leading to a classification as CNS WHO grade 4. It is the aim of this study to evaluate differences in the treatment-related clinical course of these tumors as they are largely unknown. METHODS: Patients undergoing surgery (between 2016-2019 in six neurosurgical departments) for a histologically diagnosed WHO grade 2-3 IDH1/2-wt astrocytoma were retrospectively reviewed to assess progression free survival (PFS), overall survival (OS), and prognostic factors. RESULTS: This multi-center study included 157 patients (mean age 58 years (20-87 years); with 36.9% females). The predominant histology was anaplastic astrocytoma WHO grade 3 (78.3%), followed by diffuse astrocytoma WHO grade 2 (21.7%). Gross total resection (GTR) was achieved in 37.6%, subtotal resection (STR) in 28.7%, and biopsy was performed in 33.8%. The median PFS (12.5 months) and OS (27.0 months) did not differ between WHO grades. Both, GTR and STR significantly increased PFS (P < 0.01) and OS (P < 0.001) compared to biopsy. Treatment according to Stupp protocol was not associated with longer OS or PFS compared to chemotherapy or radiotherapy alone. EGFR amplification (P = 0.014) and TERT-promotor mutation (P = 0.042) were associated with shortened OS. MGMT-promoter methylation had no influence on treatment response. CONCLUSIONS: WHO grade 2 and 3 IDH1/2 wt astrocytomas, treated according to the same treatment protocols, have a similar OS. Age, extent of resection, and strong EGFR expression were the most important treatment related prognostic factors.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Astrocitoma/genética , Astrocitoma/terapia , Astrocitoma/patologia , Resultado do Tratamento , Prognóstico , Mutação , Isocitrato Desidrogenase/genética , Organização Mundial da Saúde , Receptores ErbB/genética
18.
J Neurooncol ; 167(1): 75-88, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363490

RESUMO

PURPOSE: Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA. METHODS: A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their molecular profiles and the identification of molecular targets. RESULTS: Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy number amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA copy number alterations can be evaluated by gene expression analysis. CONCLUSIONS: TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, therefore, is expected to increase treatment options for individual patients with glioma.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patologia , Oligodendroglioma/patologia , Mutação , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Astrocitoma/patologia , Proteínas Tirosina Quinases/genética , Biomarcadores , Isocitrato Desidrogenase/genética
19.
J Neurooncol ; 167(2): 305-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424338

RESUMO

PURPOSE: Currently, there remains a scarcity of established preoperative tests to accurately predict the isocitrate dehydrogenase (IDH) mutation status in clinical scenarios, with limited research has explored the potential synergistic diagnostic performance among metabolite, perfusion, and diffusion parameters. To address this issue, we aimed to develop an imaging protocol that integrated 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy (MRS) and intravoxel incoherent motion (IVIM) by comprehensively assessing metabolic, cellular, and angiogenic changes caused by IDH mutations, and explored the diagnostic efficiency of this imaging protocol for predicting IDH mutation status in clinical scenarios. METHODS: Patients who met the inclusion criteria were categorized into two groups: IDH-wild type (IDH-WT) group and IDH-mutant (IDH-MT) group. Subsequently, we quantified the 2HG concentration, the relative apparent diffusion coefficient (rADC), the relative true diffusion coefficient value (rD), the relative pseudo-diffusion coefficient (rD*) and the relative perfusion fraction value (rf). Intergroup differences were estimated using t-test and Mann-Whitney U test. Finally, we performed receiver operating characteristic (ROC) curve and DeLong's test to evaluate and compare the diagnostic performance of individual parameters and their combinations. RESULTS: 64 patients (female, 21; male, 43; age, 47.0 ± 13.7 years) were enrolled. Compared with IDH-WT gliomas, IDH-MT gliomas had higher 2HG concentration, rADC and rD (P < 0.001), and lower rD* (P = 0.013). The ROC curve demonstrated that 2HG + rD + rD* exhibited the highest areas under curve (AUC) value (0.967, 95%CI 0.889-0.996) for discriminating IDH mutation status. Compared with each individual parameter, the predictive efficiency of 2HG + rADC + rD* and 2HG + rD + rD* shows a statistically significant enhancement (DeLong's test: P < 0.05). CONCLUSIONS: The integration of 2HG MRS and IVIM significantly improves the diagnostic efficiency for predicting IDH mutation status in clinical scenarios.


Assuntos
Neoplasias Encefálicas , Glioma , Glutaratos , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Mutação
20.
J Neuropathol Exp Neurol ; 83(4): 258-267, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408388

RESUMO

The World Health Organization has updated their classification system for the diagnosis of gliomas, combining histological features with molecular data including isocitrate dehydrogenase 1 and codeletion of chromosomal arms 1p and 19q. 1p/19q codeletion analysis is commonly performed by fluorescence in situ hybridization (FISH). In this study, we developed a 57-gene targeted next-generation sequencing (NGS) panel including 1p/19q codeletion detection mainly to assess diagnosis and potential treatment response in melanoma, gastrointestinal stromal tumor, and glioma patients. Loss of heterozygosity analysis was performed using the NGS method on 37 formalin-fixed paraffin-embedded glioma tissues that showed 1p and/or 19q loss determined by FISH. Conventional methods were applied for the validation of some glioma-related gene mutations. In 81.1% (30 of 37) and 94.6% (35 of 37) of cases, 1p and 19q were found to be in agreement whereas concordance for 1p/19q codeletion and no 1p/19q codeletion was found in 94.7% (18 of 19) and 94.4% (17 of 18) of cases, respectively. Overall, comparing NGS results with those of conventional methods showed high concordance. In conclusion, the NGS panel allows reliable analysis of 1p/19q codeletion and mutation at the same time.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hibridização in Situ Fluorescente/métodos , Glioma/genética , Glioma/patologia , Aberrações Cromossômicas , Mutação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 19/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...